

Instruções de Uso

Somente para uso diagnóstico in vitro

LDH FS* IFCC

🗼 ANTES DE UTILIZAR O PRODUTO, VERIFIQUE O NÚMERO DA INSTRUÇÃO DE USO E A VERSÃO CORRESPONDENTE NA EMBALAGEM DO MESMO.

PARA OBTER AS INSTRUÇÕES DE USO EM FORMATO IMPRESSO, SEM CUSTO ADICIONAL, CONTATAR O SERVIÇO DE ATENDIMENTO AO CONSUMIDOR: SAC (21) 3907 2534 / 0800 015 1414 / sac@biosys.com.br

Reagente diagnóstico para determinação quantitativa in vitro da Lactato Desidrogenase (LDH) no soro ou plasma.

Somente para diagnóstico de uso in vitro

Nº de lote data de fabricação e validade: ver rótulos dos frascos e da embalagem

Artigo	Apresentação
1 4211 99 10 021	R1 5x20mL + R2 1x25mL
1 4211 99 10 930	R1 4x20mL + R2 2x10mL
1 4211 99 10 920	R1 4x38,6mL + R2 4x11,4mL (800 testes)
1 4211 99 10 305	R1 10x12mL + R2 2x20mL
1 4211 99 10 191	R1 4x36mL + R2 4x9mL
1 4211 99 10 917	R1 8x60mL + R2 8x15mL
1 4211 99 10 964	R1 6x16,2mL + R2 6x6,6mL (900 testes)

SUMÁRIO[1,2]

A Lactato Desidrogenase (LDH) é uma enzima que consiste em 5 diferentes isoenzimas que catalisam a inter-conversão do L-Lactato e Piruvato. A LDH está presente no citoplasma de todas as células de tecidos humanos, com mais altas concentrações no fígado, coração e músculos esqueléticos, e valores mais baixos nos eritrócitos, pâncreas, rins e estômago. O aumento das atividades da LDH é encontrado em uma variedade de condições patológicas como infarto do miocárdio, câncer, doenças do fígado, sangue ou músculos. Entretanto, por causa da falta de especificidade de órgão, a determinação de suas isoenzimas ou outras enzimas como a Fosfatase Alcalina ou ALAT/ASAT é necessária para um diagnóstico diferencial.

<u>MÉTODO</u>

Teste otimizado de acordo com a IFCC (Federação Internacional de Análises Clínicas e Medicina Laboratorial) e DGKC (Sociedade Alemã de Ouímica Clínica).

PRINCÍPIO

L-L actato+ NAD+< LDH > Pvruvato + NADH + H+

REAGENTES

Componentes e Concentrações

 R1:
 N-Metil-D-Glucamina
 pH 9.40
 420 mmol/L

 L-Lactato
 65 mmol/L

 R2:
 NAD+
 50 mmol/L

<u>INSTRUÇÕES DE ARMAZENAGEM E ESTABILIDADE DOS REAGENTES</u>

Os reagentes são estáveis até o final do mês da data de validade indicada no rótulo, se armazenados à $2-8\,^\circ\text{C}$ e a contaminação for evitada. Não congelar os reagentes!

O Reagente 2 deve ser protegido da luz.

CUIDADOS E PRECAUÇÕES

- Em casos muitos raros, amostras de pacientes com gamopatia podem apresentar falsos resultados [8].
- Por favor, consulte a ficha de segurança e tome as precauções necessárias para o manuseio de reagentes de laboratório. Para um diagnóstico final, os resultados devem ser correlacionados com o histórico médico, exame clínico e outros achados.
- 3. Apenas para uso profissional.

GARANTIA

Estas instruções de uso devem ser lidas atentamente antes da utilização do produto e as instruções nela contidas devem ser rigorosamente cumpridas. A confiabilidade dos resultados do ensaio não poderá ser garantida em caso de desvio às instruções.

DESCARTE

Seguir as disposições da resolução sobre o regulamento técnico para gerenciamento de resíduos de serviços de saúde, bem como outras práticas de biossegurança equivalentes, revisão em vigor

PREPARO DOS REAGENTES

Partida com substrato

Os reagentes estão prontos para uso.

Partida com amostra

Misturar 4 partes de R1 + 1 parte de R2.

Ex: (20 mL de R1 + 5 mL de R2) = monoreagente

Estabilidade: 12 horas 2 a 8 C

 $2\ horas\ a\ 15-25\ C$

O monoreagente deve ser protegido da luz.

MATERIAIS REQUERIDOS MAS NÃO FORNECIDOS

Solução NaCl 9 g/L. Equipamento geral de laboratório

AMOSTRA

Soro, Plasma heparinizado ou Plasma em EDTA.

Estabilidade [6]: 4 dias à 20-25 °C

6 semanas à 4 - 8 °C

Descarte amostras contaminadas.

PROCEDIMENTOS DO TESTE

Aplicações para sistemas automáticos estão disponíveis quando solicitadas ou em nosso site www.biosys.com.br

Instruções de Uso

Somente para uso diagnóstico in vitro

Comprimento de onda: 340 nm, Hg 365 nm, Hg 334 nm Caminho óptico: 1 cm Temperatura: 37 °C

Medição: contra o branco do reagente

Partida com Substrato

	Branco	Amostra		
Amostra/calibrador	-	20 μL		
Água destilada	20 μL	-		
Reagente 1	1000 μL	1000 μL		
Misturar, incubar 1 - 5 min., e então adicionar:				
Reagente 2	250 μL	250 μL		
Misturar, ler a absorbância após 1 min. e disparar o cronômetro.				
Ler a absorbância novamente após 1, 2 e 3 min.				

Partida com amostra

	Branco	Amostra	
Amostra/calibrador	-	20 μL	
Água destilada	20 μL	-	
Monorreagente	1000 μL	1000 μL	
Misturar, ler a absorbância após 1 min. e disparar o cronômetro.			
Ler a absorbância novamente ap	ós 1, 2 e 3 min.		

CÁLCULOS

Com fator

A partir do cálculo $\Delta A/\min$ de leitura da absorbância e multiplicação pelo fator corresponde Segundo a tabela abaixo:

 \Box A/min x fator = atividade LDH [U/L]

Partida com substrato

340 nm	10080
334 nm	10275
365 nm	108675

Partida com amostra

340 nm	8095
334 nm	8250
365 nm	15000

Com calibrador

 $LDH \ [U \ / \ L] = \Delta A \ / \min Sample \qquad x \ Conc. \ Calibrator \ [U \ / \ L]$

ΔA / min Calibrator

Fator de conversão

LDH [U/L] x $0.0167 = LDH [\mu kat/L]$

CALIBRADORES E CONTROLES

Para a calibração de sistemas fotométricos automáticos, o calibrador TruCal U DiaSys é recomendado. Esse método foi padronizado de acordo com a formulação original IFCC (coeficiente de extinção molar de 340 nm). Para controle de qualidade interno, os controles TruLab N e P DiaSys e TruLab Urina DiaSys devem ser utilizados. Cada laboratório deve estabelecer ação corretiva em caso de variação na recuperação do controle.

	Cat. No.	Kit si	ze
TruCal U	5 9100 99 10 063	20 x	3 mL
TruLab N	5 9000 99 10 062	20 x	5 mL
TruLab P	5 9050 99 10 062	20 x	5 mL
	5 9050 99 10 061	6 x	5 mL

DESEMPENHO / CARACTERÍSTICAS

Faixa de Medição

O teste foi desenvolvido para determinar de até 1200 U/L de LDH. Quando os valores excederem essa faixa, as amostras devem ser diluídas manualmente ou usar a função de *rerun*.

No caso de procedimento manual, o teste é adequado para atividade de LDH que corresponde a um máximo de $\Delta A/min$ igual a 0,15 à 340 e 334 nm ou igual a 0,08 à 364 nm. Se esses valores forem excedidos, a amostra deve ser diluída 1+10 com solução NaCl (9g/L) e o resultado multiplicado por 11.

Especificidade / Interferentes

Nenhuma interferência foi observada por Ácido Ascórbico até 30 mg/dL, Bilirrubina até 40 mg/dL e Lipemia até 2000 mg/dL de Triglicerídeos. A Hemólise interfere porque a LDH é liberada pelos eritrócitos. Para maiores informações sobre substâncias interferentes se referir ao Young DS [7].

Sensibilidade / Limite de Detecção

O limite mínimo de detecção é de 5 U/L.

Precisão (à 25° C)

-	recisao (a 25 C)			
	Intra-ensaio	Média	SD	CV
	n = 20	[U/L]	[U/L]	[%]
	Amostra 1	178	2.00	1.12
	Amostra 2	187	2.12	1.14
	Amostra 3	566	2.27	0.40

Inter-ensaio	Média	SD	CV
n = 20	[U/L]	[U/L]	[%]
Amostra 1	170	1.62	0.95
Amostra 2	176	2.48	1.41
Amostra 3	566	3.61	0.64

Comparação de Métodos n = 152

Uma comparação entre LDH FS IFCC DiaSys (y) com o reagente IFCC de referência (x) usando 51 amostras de soro, obteve o seguinte resultado:

y = 0.949 x + 8.451 U/L; r = 0.998

Uma comparação LDH FS IFCC DiaSys (y) com um teste disponível no mercado (x) usando 51 amostras de soro, obteve o seguinte resultado: $y=0.992\ x+10.72\ U/L;\ r=0.997$

VALORES DE REFERÊNCIA

	Mulher [U/L]	Homem [U/L]	Mulher [µkat/L]	Homem [µkat/L]
Adultos [3]	< 247	< 248	< 4.12	< 4.14
Crianças [5]				
1-30 dias	145-765	125-735	2.42-12.8	2.09-12.3
31dias-1 ano	190-420	170-450	3.17-7.01	2.84-7.52
1-3anos	165-395	155-345	2.76-6.60	2.59-5.76
4-6 anos	135-345	155-345	2.25-5.76	2.59-5.76
7-9 anos	140-280	145-300	2.34-4.68	2.42-5.01
10-12 anos	120-260	120-325	2.00-4.34	2.00-5.43
13-15 anos	100-275	120-290	1.67-4.59	2.00-4.84
16-18 anos	105-230	105-235	1.75-3.84	1.75-3.92

Cada laboratório deve verificar se os valores de referência podem ser utilizados na sua própria população de pacientes e determinar seus próprios valores de referência, se necessário.

Instruções de Uso

Somente para uso diagnóstico in vitro

INFORMAÇÕES ADICIONAIS DESTE REAGENTE PARA USO NO RESPONS 920

DESEMPENHO / CARACTERÍSTICAS

Faixa de medição: até 1200 U/L de LDH(em casos de atividade alta medir novamente após diluição manual ou utilizar a função <i>rerun</i> do equipamento)			
Limite de detecção *** 6 U/L de LDH			
Estabilidade <i>on-board</i>	10 dias		
Estabilidade de calibração	5 dias		
Interferência < 10% por:			
Acido Ascórbico até 30 mg/Dl			
Bilirrubina até 60 mg/Dl			
Lipemia (triglicerídeos) até 2000 mg/Dl			
Hemoglobina interfere em baixas concentrações; indica destruição de eritrócitos, e portanto, aumento de LDH.			
Para maiores informações sobre substâncias interferentes se referir ao Young DS [7]			

Precisão			
Intra-ensaio (n=20)	Amostra 1	Amostra 2	Amostra 3
Média (U/L)	135	248	377
C.V. (%)	2.30	1.18	1.46
Inter-ensaio (n=20)	Amostra 1	Amostra 2	Amostra 3
Média (U/L)	138	235	378
C.V. (%)	3.84	4.85	2.13

Comparação de Métodos (n=110)	
Teste x	DiaSys LDH FS (Hitachi 917)
Teste y	DiaSys LDH FS (respons®920)
Slope	0.946
Interceptação	-2.24 U/L
Coeficiente de Correlação	0.990

^{***} a menor concentração mensurável que pode ser diferente de zero média + 3 DP (n=20) de uma amostra livre de analito

CUIDADOS E PRECAUÇÕES

Para evitar contaminação cruzada realizar uma lavagem eficiente, principalmente após usar reagentes que causem interferência. Consulte a tabela de incompatibilidade do Respons 920. Etapas para lavagem automática para incompatibilidade com a solução de limpeza recomendada podem estar especificadas no software do equipamento. Por favor, consulte o manual do usuário.

PREPARO DOS REAGENTES

Os reagentes estão prontos para uso. Os frascos do Respons devem ser colocados diretamente no rotor de reagentes e conferem proteção à luz.

FATOR DE CONVERSÃO

LDH [U/L] x 0.0167= LDH [µkat/L]

LITERATURA

- Thomas L. Clinical laboratory diagnostics. 1st ed. Frankfurt: TH-Books Verlagsgesellschaft;1998. 89-94.
- Moss DW, Henderson AR. Clinical enzymology In: Burtis CA, Ashwood ER, editors. Tietz Textbook of Clinical Chemistry. 3rd ed. Philadelphia: W.B Saunders Company;1999.617-721.
- Schumann G, Bonora R, Ceriotti F, Férard G et al. IFCC primary reference procedure for the measurement of catalytic activity concentrations of enzymes at 37 °C. Part 3: Reference procedure for the measurement of catalytic concentration of lactate dehydrogenase. ClinChem Lab Med 2002;40:643-48.
- Deutsche Gesellschaft für Klinische Chemie. (German Society for Clinical Chemistry). Recommendation for the determination of the catalytic concentration of lactate dehydrogenase at 37 °C. Eur J ClinChemClinBiochem 1993;31:897-9.
- Soldin JS, Hicks JM. Pediatric reference ranges. Washington: AACC Press:1995:95.

- Guder WG, Zawta B et al. The Quality of Diagnostic Samples. 1st ed. Darmstadt: GIT Verlag; 2001; p. 36-7.
- Young DS. Effects of Drugs on Clinical Laboratory Tests. 5th ed. Volume 1 and 2. Washington, DC: The American Association for Clinical Chemistry Press 2000.
- Bakker AJ, Mücke M. Gammopathy interference in clinical chemistry assays: Mechanisms, detection and prevention. Clin Chem Lab med 2007; 45(9): 1240–1243.

Fabricado por: DiaSys Diagnostic Systems GmbH Importado e Distribuído por: BioSys Ltda

Rua Coronel Gomes Machado, 358, Centro, Niterói, RJ Cep: 24020-112

CNPJ: 02.220.795/0001-79 MS – nº 80115310219

SAC: <u>sac@biosys.com.br</u> - (21) 3907-2534 / 0800 015 1414

www.biosys.com.br

