Instruções de Uso

Somente para uso diagnóstico in vitro

Kovalent

HDL-C IMUNO

MS 80115310052

ANTES DE UTILIZAR O PRODUTO, VERIFIQUE O NÚMERO DA INSTRUÇÃO DE USO E A VERSÃO CORRESPONDENTE NA EMBALAGEM DO MESMO.

PARA OBTER AS INSTRUÇÕES DE USO EM FORMATO IMPRESSO, SEM CUSTO ADICIONAL, CONTATAR O SERVIÇO DE ATENDIMENTO AO CONSUMIDOR: SAC (21) 3907 2534 / 0800 015 1414 / sac@kovalent.com.br

APRESENTAÇÃO

Artigo nº	Apresentação
1050075K	R1 3x20mL + R2 1x15mL
1050075M	R1 3x20mL + R2 1x15mL
1050250K	R1 1x200mL + R2 1x50mL
1050200R	R1 4x38,6mL + R2 4x11,4mL

FINALIDADE

Reagente de diagnóstico *in vitro* para determinação quantitativa da lipoproteína de alta densidade em sistemas fotométricos.

SUMÁRIO1,2

Colesterol é um componente de membranas celulares e um precursor para hormônios esteroides e ácidos biliares sintetizados pelas células do corpo e absorvidos com alimentos. O colesterol é transportado no plasma pelas lipoproteínas, isto é, complexos entre lipídios e apolipoproteínas. Há quatro classes de lipoproteínas: lipoproteínas de alta densidade (HDL), lipoproteínas de baixa densidade (LDL), lipoproteínas de muito baixa densidade (VLDL) e quilomicrons. Enquanto o LDL está envolvido no transporte de colesterol para as células periféricas, o HDL é responsável pela captação desse componente das células. As quatro diferentes classes de lipoproteínas mostram relação distinta com a arteriosclerose coronária. O LDL-colesterol (LDL-C) contribui para a formação de placa arteriosclerótica no interior da artéria e é fortemente associado à doença coronária cardíaca (DCC) e mortalidade relacionada. Mesmo com colesterol total dentro da faixa normal, uma concentração aumentada de LDL-C indica risco elevado. O HDL-C possui um efeito protetor impedindo a formação da placa e mostra uma relação inversa à prevalência de DCC. De fato, valores baixos de HDL-C constituem um fator de risco independente. A determinação do nível de colesterol total (CT) individual é utilizada para fins de triagem enquanto que para uma melhor avaliação de risco, é necessário mensurar adicionalmente HDL-C e LDL-C.

Nos últimos anos, diversos ensaios clínicos controlados usando dieta, mudanças do estilo de vida e/ou diferentes drogas (especialmente inibidores de HMG-CoA redutase [estatinas]) demonstraram que baixando os níveis de colesterol total e de LDL-C, reduz drasticamente o risco à DCC.

MÉTODO

Determinações prévias de HDL-C foram realizadas por métodos de precipitação de consumo de tempo³.

O HDL-C-IMUNO é um método homogêneo para dosagem de HDL-C, sem etapas de centrifugação. Anticorpos contra lipoproteínas humanas são utilizados para formas complexos antígeno-anticorpo com LDL, VLDL e quilomicrons de maneira que somente HDL-C é seletivamente determinado por uma dosagem enzimática de colesterol⁴.

PRINCÍPIO

Anticorpos β-lipoproteína humana formam complexos com LDL, VLDL e quilomicrons de forma que apenas o HDL-COLESTEROL reaja enzimaticamente com o Colesterol Oxidase e Colesterol Esterase gerando Peróxido de Hidrogênio e este ao reagir com F-DAOS e 4-Aminoantipirina sob ação catalítica da Peroxidase, formando um complexo azul. A intensidade da coloração é usada para quantificar o HDL-Colesterol.

LDL, VLDL, quilomicrons $\xrightarrow{\text{Anticorpos }\beta\text{-Lipoprote}(\text{na humana})}$

Complexo antígeno-anticorpo + HDL

HDL-Colesterol + $H_2O + O_2 \xrightarrow{CHE \& CHO}$

Colesterol-3-ona + Ácidos graxos + H₂O₂

pH 7.0

26 mmol/L

0.50 mmol/l

0.16 mmol/L

H₂O₂ + F-DAOS + 4-Aminoantipirina — POD → Complexo Azul +H₂O

REAGENTES

Componentes e Concentrações

R1 Tampão GOOD's

4-Aminoantinirina

	+ / www.		0,00 1111101/12
	Peroxidase (POD)		1600 U/L
	Ascorbato Oxidase		1800 U/L
	Anticorpo de β -Lipoproteína anti-humana (ovelha)		
R2	Tampão GOOD's	pH 7,0	26 mmol/L
	Colesterol Esterase (CHE)		700 U/L
	Colesterol oxidase (CHO)		4000 U/L
	N-Etil-N-(2-Hidroxi-3-Sulfopropil) - 3,5-		

(F-DAOS)

ARMAZENAMENTO E ESTABILIDADE DOS REAGENTES

Os reagentes são estáveis até o prazo da data de validade, se armazenados a temperatura de 2 a 8 °C, protegidos da luz e a contaminação for evitada. Não congele os reagentes!

Nota: A medição não é influenciada por mudanças ocasionais na cor, caso a absorbância do reagente pré-misturado (4 partes de R1 com 1 parte de R2) seja < 0,03 a 600 – 700 nm.

Estabilidade on board: 4 semanas a 2 - 8 °C

Dimetoxi-4-Fluoroanilina, sal de sódio

CUIDADOS E PRECAUÇÕES

- Reagente R1: Atenção! Causa irritação em contato com a pele. Utilizar luvas, roupas, óculos e mascaras de proteção. Em caso de contato com a pele: lavar abundantemente com água e sabão. Caso ocorra irritação na pele procure orientação médica.
- Em casos muito raros, amostras de pacientes com gamopatia podem apresentar resultados alterados.⁸
- Os fármacos N-acetilcisteína (NAC), acetaminofeno (paracetamol) e metamizol (dipirona) provocam resultados falsamente baixos em amostras de pacientes.
- 4. Por favor, consulte a ficha de segurança e tome as precauções necessárias para o manuseio de reagentes de laboratório. Para um diagnóstico final, os resultados devem sempre ser correlacionados com o histórico médico do paciente, exames clínicos e outros resultados.
- 5. Apenas para uso profissional!

GERENCIAMENTO DE RESÍDUOS

Seguir as disposições da resolução RDC n° 306/2004 que dispõe sobre o regulamento técnico para gerenciamento de resíduos de serviços de saúde, bem como outras práticas de biossegurança equivalentes.

PREPARO DOS REAGENTES

Os reagentes estão prontos para uso.

MATERIAIS NECESSÁRIOS, MAS NÃO FORNECIDOS

- 1. Solução NaCl 9 g/L
- Equipamento geral de laboratório.

AMOSTRA

Soro ou plasma heparinizado⁵

Estabilidade: 2 dias a $20-25\,^{\circ}\mathrm{C}$ 7 dias a $4-8\,^{\circ}\mathrm{C}$ 3 meses a $-20\,^{\circ}\mathrm{C}$

Descartar amostras contaminadas. Congele somente uma vez.

PROCEDIMENTOS PARA O TESTE

Aplicações para sistemas automáticos estão disponíveis quando requisitadas ou em nosso site: www.kovalent.com.br

Comprimento de onda 600 nm / 700 nm (dosagem bicromática)

Caminho óptico 1 cm Temperatura 37 °C

Medição Contra branco de reagente

Instruções de Uso

Somente para uso diagnóstico in vitro

 ΔA = (A2 – A1) amostra ou calibrador

CÁLCULOS

Com calibrador

 $HDL - C [mg/dl] = \frac{\Delta A Amostra}{\Delta A Calibrador} \times Conc. Calibrador [mg/dl]$

Fator de conversão

 $HDL-C [mg/dL] \times 0.02586 = HDL-C [mmol/L]$

CALIBRADORES E CONTROLES

Para a calibração em sistemas fotométricos automatizados, o calibrador Topkal HDL/LDL Kovalent é recomendado. Para controle de qualidade interno, o controle Topkon L Kovalent deve ser medido. Cada laboratório deve estabelecer ações corretivas em caso de desvios em recuperação de controles.

GARANTIA

Estas instruções de uso devem ser lidas atentamente antes da utilização do produto e as informações nela contidas devem ser rigorosamente cumpridas. A confiabilidade dos resultados do ensaio não poderá ser garantida em caso de desvio às instruções.

CARACTERÍSTICAS / DESEMPENHO

Faixa de Medição

O teste foi desenvolvido para determinar a concentração de HDL-C dentro de uma faixa de medição de 1 - 180 mg/dL (0,03 - 4,7 mmol/L). Quando os valores excederem essa faixa, as amostras devem ser diluídas 1 + 2 com solução de NaCl (9g/L) e o resultado multiplicado por 3.

Especificidade / Interferências

Nenhuma interferência foi observada por ácido ascórbico até 50 mg/dL, bilirrubina até 40 mg/dL, hemoglobina até 500 mg/dL e lipemia até 1200 mg/dL de triglicerídeos. Para mais informações sobre substâncias interferentes vide Young DS⁶.

Sensibilidade / Limite de Detecção

O limite de detecção mais baixo é 1 mg/dL (0,03 mmol/L).

Precisão (n=20)

Precisão Intra-ensaio n = 20	Média [mg/dL]	DP [mg/dL]	CV [%]
Amostra 1	20,4	0,17	0,81
Amostra 2	56,0	0,41	0,73
Amostra 3	125	1,03	0,82

Precisão Inter-ensaio	Média	DP	CV
n = 20	[mg/dL]	[mg/dL]	[%]
Amostra 1	44,0	0,83	1,88

Comparação de Métodos

Uma comparação de métodos entre o HDL-C Imuno Kovalent (y) e um teste comercial disponível (x) usando 60 amostras obteve os seguintes resultados: y = 1,05 x + 0,571 mg/dL; r = 0,995.

VALORES DE REFERÊNCIA

≥ 35 mg/dL (0,9 mmol/L)

Cada laboratório deve verificar se os valores de referência podem ser utilizados na sua própria população de pacientes e determinar seus próprios valores de referência, se necessário.

Interpretação Clínica

Estudos epidemiológicos observaram que baixas concentrações de HDL, < 39 mg/dL (0,9 mmol/L) em homens e < 43 mg/dL (1,0 mmol/L) em mulheres, especialmente se associados com triglicerídeos (jejum) > 180 mg/dL (2 mmol/L), indicam um alto risco de doenças coronárias².

LITERATURA

 Rifai N, Bachorik PS, Albers JJ. Lipids, lipoproteinsand apolipoproteins. In: Burtis CA, Ashwood ER, editors. Tietz Textbook of Clinical Chemistry. 3rd ed. Philadelphia: W.B Saunders Company; 1999. p. 809-61.

Kovalent

- Recommendation of the Second Joint Task Force of European and other Societies on Coronary Prevention. Prevention of coronary heart disease in clinical practice. Eur Heart J 1998; 19: 1434-503.
- Wiebe DA, Warnick GR. Measurement of high-density lipoprotein cholesterol. In: Rifai N, Warnick GR, Dominiczak MH, eds. Handbook of lipoprotein testing. Washington: AACC Press, 1997 p.127-44.
- Nauck M, Maerz W, Wieland H. New immunoseparation-based homogenous assay for HDL-cholesterol compared with three homogenous and two heterogeneous methods for HDLcholesterol. Clin Chem 1998: 44:1443-51.
- cholesterol. Clin Chem 1998; 44:1443-51.

 5. Guder WG, Zawta B et al. The Quality of Diagnostic samples. 1° ed. Darmstadt: GIT Verlag; 2001; p. 22-3.
- Young DS. Effects of Drugs on Clinical Laboratory Tests. 5th ed. Volume 1 and 2. Washington, DC: The American Association for Clinical Chemistry Press 2000.
 Schaefer EJ, McNamara J. Overview of the diagnosis and
- Schaefer EJ, McNamara J. Overview of the diagnosis and treatment of lipid disorders. In: Rifai N, Warnick GR, Dominiczak MH, eds. Handbook of lipoprotein testing. Washington: AACC Press; 1997.p.25-48.
- Bakker AJ, Mucke M. Gammopathy interference in clinical chemistry assays: mechanisms, detection and prevention. Clin Chem Lab Med 2007; 45(9):1240-1243.

INFORMAÇÕES AO CONSUMIDOR

Sí

Fabricante

Símbolos Usados

Limites de temperatura

Diagnóstico in vitro

Cuidado, consulte documentos anexos

Consulte instruções de uso

Material Reciclável

Não rejeitar diretamente para o ambiente

Lote

Data de Fabricação

Validade

Risco Biológico

Altamente tóxico

Corrosivo

Nocivo

FABRICADO POR

Kovalent do Brasil Ltda.

Rua Cristóvão Sardinha, 110 – Jd. Bom Retiro São Gonçalo – RJ – CEP 24722-414 - Brasil www.kovalent.com.br CNPJ: 04.842.199/0001-56 Farm. Resp.: Jorge A. Janoni

CRF: 2648-RJ

Apresentações comercializadas sob demanda:

N° de registro	Apresentação
80115310052	R1 4x40mL + R2 4x10mL

SAC: sac@kovalent.com.br - (21) 3907-2534 / 0800 015 1414

Data de vencimento e nº de Lote: VIDE RÓTULO