Instruções de Uso

Somente para uso diagnóstico in vitro

PROCALCITONIN FS PROCALCITONINA FS

ANTES DE UTILIZAR O PRODUTO, VERIFIQUE O NÚMERO DA INSTRUÇÃO DE USO E A VERSÃO CORRESPONDENTE NA EMBALAGEM DO MESMO.

PARA OBTER AS INSTRUÇÕES DE USO EM FORMATO IMPRESSO, SEM CUSTO ADICIONAL, CONTATAR O SERVIÇO DE ATENDIMENTO AO CONSUMIDOR: SAC (21) 3907 2534 / 0800 015 1414 / sac@kovalent.com.br

Reagente diagnóstico para determinação quantitativa in vitro de Procalcitonina (PCT) em soro ou plasma em sistemas fotométricos.

Nº de lote data de fabricação e validade: vide rótulos dos frascos e da embalagem.

Artigo	Apresentação
1 7318 99 10 930	R1 2x18mL + R2 2x6mL

SUMÁRIO

A sepse é uma disfunção orgânica com risco à vida causada por uma resposta imune desregulada do hospedeiro à uma infecção. É uma preocupação de saúde global e uma das maiores causas de morte em todo o mundo, afetando cerca de 48,9 milhões de pessoas por ano¹⁻³.

O diagnóstico e o tratamento precoce da sepse ainda permanecem como um grande desafio nas unidades de tratamento intensivo. PCT, precursor tireoidiano da calcitonina, é um aminoácido polipeptídico de 116 aminoácidos com peso molecular de aproximadamente 13 kDa. Sob condições fisiológicas, o PCT é exclusivamente sintetizado pelas células C da tireoide e sofre sucessivas clivagens em três fragmentos, N-terminal, calcitonina e katacalcina³⁻

Os níveis de PCT no soro em indivíduos saudáveis são muito baixos (< 0,05 ng/mL). Em resposta à infecções microbianas sistêmicas e à sepse, o PCT é ubiquamente expresso em múltiplos tecidos pelo estímulo de citocinas inflamatórias ou de endotoxinas bacterianas, e pode ser aumentado em até 1000 ng/mL $^{5-8}$.

<u>MÉTODO</u>

Teste imunoturbidimétrico melhorado por partículas.

PRINCÍPIO

Determinação da concentração de Procalcitonina pela medição fotométrica da reação antígeno-anticorpo entre anticorpos contra Procalcitonina humana ligados a partículas de poliestireno e a Procalcitonina presente na amostra.

REAGENTES

Componentes e Concentrações:

$\underline{R1} \Rightarrow$	TRIS	pH 6,5	0,1 mol/L
R2⇒	TRIS	pH 9.0	0.1 mol/L

Anticorpos policionais (cabra) contra PCT humana covalentemente ligados a partículas de poliestireno.

ARMAZENAMENTO E ESTABILIDADE DOS REAGENTES

Os reagentes são estáveis até o prazo da data de validade, se a contaminação for evitada, protegidos da luz e armazenados a temperatura de 2 a 8 °C. Não congelar os reagentes!

CUIDADOS E PRECAUÇÕES

- Os reagentes contêm azida sódica (0,9 g/L) como conservante. Não ingerir! Evitar o contato com a pele e com as membranas mucosas.
- O Reagente 2 contém material de origem animal. Manusear o produto como potencialmente infeccioso de acordo com as medidas de precaução universais e com as boas práticas de laboratório.
- Em casos muito raros, amostras de pacientes com gamopatia podem apresentar resultados alterados⁹.
- Por favor, consulte a ficha de segurança e tome as precauções necessárias para o manuseio de reagentes de laboratório. Para um diagnóstico final, os resultados devem sempre ser correlacionados

com o histórico médico do paciente, exames clínicos e outros resultados.

Apenas para uso profissional!

GERENCIAMENTO DE RESÍDUOS

Seguir as disposições da resolução em vigor que dispõe sobre o regulamento técnico para gerenciamento de resíduos de serviços de saúde, bem como outras práticas de biossegurança equivalentes.

PREPARO DOS REAGENTES

Os reagentes estão prontos para uso.

MATERIAIS NECESSÁRIOS, MAS NÃO FORNECIDOS

Solução NaCl (9 g/L)

Equipamento geral de laboratório.

AMOSTRA

Soro ou plasma heparinizado

Estabilidade^{10,11}: 24 horas a 20 - 25 °C 5 dias a 2 - 8 °C

14 dias a -20 °C

Congelar somente uma vez.

Descartar amostras contaminadas.

PROCEDIMENTOS PARA O TESTE

Aplicações para sistemas automáticos estão disponíveis quando requisitadas ou em nosso site: www.kovalent.com.br

O procedimento manual pode diferir ligeiramente das aplicações para os sistemas automatizados.

Comprimento de onda 660 nm Temperatura 37 °C

Medição Contra o branco do reagente

	Branco	Amostra ou padrão	
Amostra ou padrão	=	60 μL	
Água destilada	60 μL	-	
Reagente 1	720 μL	720 μL	
Misturar, incubar por 5 minutos, então adicionar:			
Reagente 2	240 μL	240 μL	
Misturar, incubar por 5 min e 50 segundos a 37°C, e então ler a absorbância A1. Após 10 minutos, ler a absorbância A2.			

CÁLCULOS

A concentração de PCT em amostras é derivada da curva de calibração utilizando um modelo matemático apropriado como o RCM ou *spline*. A curva de calibração é obtida com seis diferentes níveis de calibrador, incluindo um valor zero baseado na matriz. Estabilidade da calibração: 4 semanas

DiaSys

Diagnostic Systems

Instruções de Uso

Somente para uso diagnóstico in vitro

CALIBRADORES E CONTROLES

Para a calibração em sistemas fotométricos automatizados, o calibrador TruCal PCT é recomendado. Para controle de qualidade interno, os controles TruLab PCT Level 1 e TruLab PCT Level 2 devem ser medidos. Cada laboratório deve estabelecer ações corretivas em caso de desvios em recuperação de controles.

GARANTIA

Estas instruções de uso devem ser lidas atentamente antes da utilização do produto e as informações nela contidas devem ser rigorosamente cumpridas. A confiabilidade dos resultados do ensaio não poderá ser garantida em caso de desvio às instruções.

CARACTERÍSTICAS / DESEMPENHO

Faixa de Medição

O ensaio foi desenvolvido para determinar concentrações de procalcitonina dentro de uma faixa de medição de 0,2 - 50 ng/mL. Quando os valores excederem esta faixa as amostras devem ser diluídas 1 + 4 com solução de NaCl (9 g/L) e o resultado multiplicado por 5.

Especificidade / Interferências

Nenhuma interferência foi observada com as seguintes substâncias nas respectivas concentrações apresentadas na tabela a seguir:

Substância interferente	Concentração
Ácido ascórbico	150 mg/dL
Bilirrubina (conjugada)	60 mg/dL
Bilirrubina (livre)	60 mg/dL
Hemoglobina	1000 mg/dL
Lipemia (triglicerídeos)	1500 mg/dL
Fator reumatoide	1000 IU/mL
α-CGRP (humana)	10 μg/mL
β-CGRP (humana)	10 μg/mL
Calcitonina (humana)	20 ng/mL
Cefotaxima	180 mg/dL
Dobutamina	22,4 μg/mL
Dopamina	26 mg/dL
Furosamida	4 mg/dL
Imipenem	0,5 mg/mL
Noradrenalina (norepinefrina)	4 μg/mL
Vancomicina	3 mg/dL

Para mais informações sobre substâncias interferentes vide Young DS¹².

Sensibilidade / Limite de Detecção

O limite de detecção mais baixo é 0,2 ng/mL.

Precisão

Precisão Intra-ensaio	Média	DP	CV
n = 20	[ng/mL]	[ng/mL]	[%]
Amostra 1	0,446	0,029	6,53
Amostra 2	1,98	0,083	4,17
Amostra 3	9,73	0,365	3,74

Precisão Inter-ensaio	Média	DP	CV
n = 20	[ng/mL]	[ng/mL]	[%]
Amostra 1	0,500	0,037	7,34
Amostra 2	1,87	0,094	5,00
Amostra 3	9,48	0,338	3,56

Comparação de Métodos

Uma comparação de métodos entre Procalcitonin FS (y) e um teste comercial disponível (x) usando 148 amostras demonstrou os seguintes resultados: $y = 0.919 \text{ x} + 0.041; \text{ R}^2 = 0.983$

VALORES DE REFERÊNCIA 13,14

Soro ou plasma

< 0,5 ng/mL: Infecção sistêmica (sepse) improvável. Níveis baixos não excluem a infecção, pois infecções localizadas (sem

sinais sistêmicos) podem estar associados com níveis

baixos.

≥ 0,5 e < 2 ng/mL: Infecção sistêmica (sepse) possível. Paciente deve ser

monitorado de perto.

≥ 2 e < 10 ng/mL: Representa alto risco de sepse severa e/ou choque

séptico.

≥ 10 ng/mL: Sepse severa ou choque séptico, quase exclusivamente

devido à infecção bacteriana severa.

Nota: os níveis de PCT podem estar elevados independentemente de infecção bacteriana em neonatos (< 3 dias de vida, elevação fisiológica)¹⁴⁻¹⁶. Níveis aumentados de PCT podem ocorrer também em pacientes em condições médicas especiais, como por exemplo politrauma, grande cirurgia e queimadura severa^{6,7,13,14}.

Cada laboratório deve verificar se os valores de referência podem ser utilizados na sua própria população de pacientes e determinar seus próprios valores de referência, se necessário.

LITERATURA

- Rudd KE et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study, The Lancet 2020; 395 (10219): 200-211.
- Singer M et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016; 315(8): 801-810.
- Fleischmann C et al. Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am J Respir Crit Care Med. 2016; 193(3): 259–272.Thomas L. Clinical Laboratory Diagnostics. 1st ed. Frankfurt: TH-Books Verlagsgesellschaft; 1998. p. 208-14.
- Maruna P, Nedelníková K and Gürlich R. Physiology and genetics of procalcitonin. Physiol Res. 2000; 49(Suppl 1): S57–S61.
- Christ-Crain M, Müller B. Procalcitonin in bacterial infectionshype, hope, more or less? Swiss Med Weekly. 2005; 135:451-460.
- Becker KL et al. Procalcitonin in sepsis and systemic inflammation: a harmful biomarker and a therapeutic target. British journal of pharmacology 2010; 159(2): 253-264.
- Becker KL et al. Procalcitonin and the calcitonin gene family of peptides in inflammation, infection, and sepsis: a journey from calcitonin back to its precursors. The Journal of Clinical Endocrinology & Metabolism, 2004; 89(4): 1512-1525.
- 8. Müller B et al. Ubiquitous expression of the calcitonin-i gene in multiple tissues in response to sepsis. J Clin Endocrinol Metab 2001; 86(1): 396-404.
- Bakker AJ, Mücke M. Gammopathy interference in clinical chemistry assays: mechanisms, detection and prevention. ClinChemLabMed 2007; 45(9): 1240-1243.
- Gruzdys V et al. Method Verification Shows a Negative Bias between 2 Procalcitonin Methods at Medical Decision Concentrations. The journal of applied laboratory medicine 2019; 4(1): 69-77.
- Meisner M. Procalcitonin-influence of temperature, storage, anticoagulation and arterial or venous asservation of blood samples on procalcitonin concentrations. Clinical Chemistry and Laboratory Medicine 1997; 35(8): 597-602.
- Young DS. Effects of Drugs on Clinical Laboratory Tests. 5th ed.
 Volume 1 and 2. Washington, DC: The American Association for Clinical Chemistry Press 2000.
- Harbarth S et al. Diagnostic value of procalcitonin, interleukin-6, and interleukin-8 in critically ill patients admitted with suspected sepsis. Am J Respir Crit Care Med 2001; 164: 396–402.
- Meisner M. Procalcitonin Biochemie und klinische Diagnostik. 1. Auflage Bremen: UNI-MED-Verlag 2010.
- Chiesa C et al. Reliability of procalcitonin concentrations for the diagnosis of sepsis in critically ill neonates. Clinical infectious diseases 1998; 26(3): 664-672.

Diagnostic Systems

Instruções de Uso

Somente para uso diagnóstico in vitro

16. Chiesa C et al. C-reactive protein, interleukin-6, and procalcitonin in the immediate postnatal period: influence of illness severity, risk status, antenatal and perinatal complications, and infection. Clinical chemistry 2003; 49(1): 60-68.

INFORMAÇÕES AO CONSUMIDOR

Símbolos Usados

Fabricante

Limites de temperatura

Diagnóstico in vitro

Cuidado, consulte documentos anexos

Consulte instruções de uso

Material Reciclável

Não rejeitar diretamente para o ambiente

Data de Fabricação

Validade

Risco Biológico

Altamente tóxico

Corrosivo

Nocivo

Fabricado por: DiaSysDiagnostic Systems GmbH Importado e Distribuído por: Kovalent do Brasil Ltda. Rua Cristóvão Sardinha, 110, Jd. Bom Retiro São Gonçalo, RJ

Cep: 24722-414

CNPJ: 04.842.199/0001-56 MS - nº 80115310263

SAC: sac@kovalent.com.br - (21) 3907-2534 / 0800 015 1414

www.kovalent.com.br